Characterization of Ultrafine Particles and VOCs Emitted from a 3D Printer

Author:

Bernatikova Sarka,Dudacek Ales,Prichystalova Radka,Klecka Vit,Kocurkova LucieORCID

Abstract

Currently, widely available three-dimensional (3D) printers are very popular with the public. Previous research has shown that these printers can emit ultrafine particles (UFPs) and volatile organic compounds (VOCs). Several studies have examined the emissivity of filaments from 3D printing, except glycol modified polyethylene terephthalate (PETG) and styrene free co-polyester (NGEN) filaments. The aim of this study was to evaluate UFP and VOC emissions when printing using a commonly available 3D printer (ORIGINAL PRUSA i3 MK2 printer) using PETG and NGEN. The concentrations of UFPs were determined via measurements of particle number concentration and size distribution. A thermal analysis was carried out to ascertain whether signs of fiber decomposition would occur at printing temperatures. The total amount of VOCs was determined using a photoionization detector, and qualitatively analyzed via gas chromatography-mass spectrometry. The total particle concentrations were 3.88 × 1010 particles for PETG and 6.01 × 109 particles for NGEN. VOCs at very low concentrations were detected in both filaments, namely ethylbenzene, toluene, and xylene. In addition, styrene was identified in PETG. On the basis of our results, we recommend conducting additional measurements, to more accurately quantify personal exposure to both UFPs and VOCs, focusing on longer exposure as it can be a source of potential cancer risk.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3