Public Perceptions around mHealth Applications during COVID-19 Pandemic: A Network and Sentiment Analysis of Tweets in Saudi Arabia

Author:

Binkheder SamarORCID,Aldekhyyel Raniah N.ORCID,AlMogbel Alanoud,Al-Twairesh NoraORCID,Alhumaid Nuha,Aldekhyyel Shahad N.,Jamal Amr A.ORCID

Abstract

A series of mitigation efforts were implemented in response to the COVID-19 pandemic in Saudi Arabia, including the development of mobile health applications (mHealth apps) for the public. Assessing the acceptability of mHealth apps among the public is crucial. This study aimed to use Twitter to understand public perceptions around the use of six Saudi mHealth apps used during COVID-19: “Sehha”, “Mawid”, “Sehhaty”, “Tetamman”, “Tawakkalna”, and “Tabaud”. We used two methodological approaches: network and sentiment analysis. We retrieved Twitter data using specific mHealth apps-related keywords. After including relevant tweets, our final mHealth app networks consisted of a total of 4995 Twitter users and 8666 conversational relationships. The largest networks in size (i.e., the number of users) and volume (i.e., the conversational relationships) among all were “Tawakkalna” followed by “Tabaud”, and their conversations were led by diverse governmental accounts. In contrast, the four remaining mHealth networks were mainly led by the health sector and media. Our sentiment analysis approach included five classes and showed that most conversations were neutral, which included facts or information pieces and general inquires. For the automated sentiment classifier, we used Support Vector Machine with AraVec embeddings as it outperformed the other tested classifiers. The sentiment classifier showed an accuracy, precision, recall, and F1-score of 85%. Future studies can use social media and real-time analytics to improve mHealth apps’ services and user experience, especially during health crises.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3