Numerical Investigations through ANNs for Solving COVID-19 Model

Author:

Umar Muhammad,Sabir Zulqurnain,Raja Muhammad Asif ZahoorORCID,Javeed ShumailaORCID,Ahmad HijazORCID,Elagen Sayed K.,Khames AhmedORCID

Abstract

The current investigations of the COVID-19 spreading model are presented through the artificial neuron networks (ANNs) with training of the Levenberg-Marquardt backpropagation (LMB), i.e., ANNs-LMB. The ANNs-LMB scheme is used in different variations of the sample data for training, validation, and testing with 80%, 10%, and 10%, respectively. The approximate numerical solutions of the COVID-19 spreading model have been calculated using the ANNs-LMB and compared viably using the reference dataset based on the Runge-Kutta scheme. The obtained performance of the solution dynamics of the COVID-19 spreading model are presented based on the ANNs-LMB to minimize the values of fitness on mean square error (M.S.E), along with error histograms, regression, and correlation analysis.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3