Mothers Matter: Using Regression Tree Algorithms to Predict Adolescents’ Sharing of Drunk References on Social Media

Author:

Kurten SebastianORCID,Winant David,Beullens Kathleen

Abstract

Exposure to online drinking on social media is associated with real-life alcohol consumption. Building on the Theory of planned behavior, the current study substantially adds to this line of research by identifying the predictors of sharing drunk references on social media. Based on a cross-sectional survey among 1639 adolescents with a mean age of 15 (59% female), this study compares and discusses multiple regression tree algorithms predicting the sharing of drunk references. More specifically, this paper compares the accuracy of classification and regression tree, bagging, random forest and extreme gradient boosting algorithms. The analysis indicates that four concepts are central to predicting adolescents’ sharing of drunk references: (1) exposure to them on social media; (2) the perceived injunctive norms of the mother towards alcohol consumption; (3) the perceived descriptive norms of best friends towards alcohol consumption; and (4) willingness to drink alcohol. The most accurate results were obtained using extreme gradient boosting. This study provides theoretical, practical, and methodological conclusions. It shows that maternal norms toward alcohol consumption are a central predictor for sharing drunk references. Therefore, future media literacy interventions should take an ecological perspective. In addition, this analysis indicates that regression trees are an advantageous method in youth research, combining accurate predictions with straightforward interpretations.

Funder

Fonds Wetenschappelijk Onderzoek

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3