Relationship between Running Spatiotemporal Kinematics and Muscle Performance in Well-Trained Youth Female Athletes. A Cross-Sectional Study

Author:

Castillo-Domínguez AlejandroORCID,García-Romero Jerónimo C.ORCID,Páez-Moguer JoaquínORCID,Ponce-García TomásORCID,Medina-Alcántara Miguel,Alvero-Cruz José RamónORCID

Abstract

The purpose of this cross-sectional study was to analyse the relationship of neuromuscular performance and spatiotemporal parameters in 18 adolescent distance athletes (age, 15.5 ± 1.1 years). Using the OptoGait system, the power, rhythm, reactive strength index, jump flying time, and jump height of the squat jump, countermovement jump, and eight maximal hoppings test (HT8max) and the contact time (CT), flying time (FT), step frequency, stride angle, and step length of running at different speeds were measured. Maturity offset was determined based on anthropometric variables. Analysis of variance (ANOVA) of repeated measurements showed a reduction in CT (p < 0.000) and an increase in step frequency, step length, and stride angle (p < 0.001), as the velocity increased. The HT8max test showed significant correlations with very large effect sizes between neuromuscular performance variables (reactive strength index, power, jump flying time, jump height, and rhythm) and both step frequency and step length. Multiple linear regression found this relationship after adjusting spatiotemporal parameters with neuromuscular performance variables. Some variables of neuromuscular performance, mainly in reactive tests, were the predictors of spatiotemporal parameters (CT, FT, stride angle, and VO). Rhythm and jump flying time in the HT8max test and power in the countermovement jump test are parameters that can predict variables associated with running biomechanics, such as VO, CT, FT, and stride angle.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3