Tungsten Accumulation in Hot Spring Sediments Resulting from Preferred Sorption of Aqueous Polytungstates to Goethite

Author:

Zhao Qian,Guo Qinghai,Luo LiORCID,Yan Ketao

Abstract

Geothermal waters usually have elevated tungsten concentrations, making geothermal systems important sources of tungsten in the environment. To study the transport of tungsten in hot springs to hot spring sediment, which is one of the key processes for the release of geothermally derived tungsten to the surface environment, geochemical investigations of the hot springs and their corresponding sediments in Rehai (a representative hydrothermal area in southwestern China) and systematic laboratory experiments of tungstate and polytungstate adsorption onto typical iron-bearing minerals in hot spring sediments (i.e., pyrite and goethite) were conducted. The results demonstrate that considerable tungsten concentrations (i.e., not much less than 10 µg/L), formation of polytungstates under acidic conditions, and enrichment of iron oxide minerals represented by goethite are the prerequisites for extreme enrichment of tungsten in hot spring sediments (e.g., 991 µg/g in the ZZQ spring outflow channel). The absence of any of these conditions would weaken the immobilization of aqueous tungsten and result in higher mobility of tungsten in the hot springs and its further transport downstream, possibly polluting the other natural waters in and around Rehai that serve as local drinking water sources. This study provides an insight for identifying the key geochemical processes controlling the transport and fate of undesirable elements (in this case, tungsten) in geothermal systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3