Latent Variables Quantifying Neighborhood Characteristics and Their Associations with Poor Mental Health

Author:

Forthman Katherine L.ORCID,Colaizzi Janna M.ORCID,Yeh Hung-wenORCID,Kuplicki RayusORCID,Paulus Martin P.ORCID

Abstract

Neighborhood characteristics can have profound impacts on resident mental health, but the wide variability in methodologies used across studies makes it difficult to reach a consensus as to the implications of these impacts. The aim of this study was to simplify the assessment of neighborhood influence on mental health. We used a factor analysis approach to reduce the multi-dimensional assessment of a neighborhood using census tracts and demographic data available from the American Community Survey (ACS). Multivariate quantitative characterization of the neighborhood was derived by performing a factor analysis on the 2011–2015 ACS data. The utility of the latent variables was examined by determining the association of these factors with poor mental health measures from the 500 Cities Project 2014–2015 data (2017 release). A five-factor model provided the best fit for the data. Each factor represents a complex multi-dimensional construct. However, based on heuristics and for simplicity we refer to them as (1) Affluence, (2) Singletons in Tract, (3) African Americans in Tract, (4) Seniors in Tract, and (5) Hispanics or Latinos in Tract. African Americans in Tract (with loadings showing larger numbers of people who are black, single moms, and unemployed along with fewer people who are white) and Affluence (with loadings showing higher income, education, and home value) were strongly associated with poor mental health (R2=0.67, R2=0.83). These findings demonstrate the utility of this factor model for future research focused on the relationship between neighborhood characteristics and resident mental health.

Funder

National Institute of General Medical Sciences

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3