Speciation Variation and Bio-Activation of Soil Heavy Metals (Cd and Cr) in Rice-Rape Rotation Lands in Karst Regions

Author:

Zhang Jiachun,Mu Guiting,Zhang ZhenmingORCID,Huang XianfeiORCID,Fang Hui

Abstract

Heavy metals in soil are in a high background state in Karst areas, and agricultural activities will affect the bioactivity of heavy metals. The heavy metal (Cd and Cr) bioactivity and their activation effects in rice-rape rotation lands in Karst areas were studied based on field experiments and laboratory analysis, and the influencing factors of heavy metal activity were analyzed based on the physical and chemical properties of soil. The results suggest that the residual fraction was the largest and the exchangeable fraction was the smallest for both Cr and Cd in rice-rape rotation lands in Karst areas. During the rice-rape rotation process, Cd and Cr tended to be released from the residual fraction and transformed into the other four fractions. The fractions with high bioactivity, including the exchangeable fraction and carbonate fraction, increased to different degrees. Rice-rape rotation could activate the activity of soil Cd and Cr in Karst areas. It is also revealed that the activity of soil Cd and Cr in Karst areas was closely associated with soil pH and electric potential (Eh). In the 0–20 cm soil layer, Cr showed a significant negative correlation with pH (r = −0.69, p < 0.05), while both Cr and Cd showed significant negative correlations with Eh, and the correlation coefficients were −0.85 (p < 0.01) and −0.83 (p < 0.01), respectively. In the 20–40 cm soil layer, Cr showed significant negative correlations with Eh, and the correlation coefficient was −0.95 (p < 0.01). No significant correlation between the activity of soil Cd and Cr and soil mechanical composition was observed. This study revealed that special attention should be paid to changes in pH and Eh in consideration of heavy metal activity in the rice-rape rotation process.

Funder

This work was financially supported by the Guizhou Science and Technology Support Plan Project

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3