Comparing Methods to Impute Missing Daily Ground-Level PM10 Concentrations between 2010–2017 in South Africa

Author:

Arowosegbe Oluwaseyi OlalekanORCID,Röösli MartinORCID,Künzli Nino,Saucy ApollineORCID,Adebayo-Ojo Temitope Christina,Jeebhay Mohamed F.ORCID,Dalvie Mohammed Aqiel,de Hoogh KeesORCID

Abstract

Good quality and completeness of ambient air quality monitoring data is central in supporting actions towards mitigating the impact of ambient air pollution. In South Africa, however, availability of continuous ground-level air pollution monitoring data is scarce and incomplete. To address this issue, we developed and compared different modeling approaches to impute missing daily average particulate matter (PM10) data between 2010 and 2017 using spatiotemporal predictor variables. The random forest (RF) machine learning method was used to explore the relationship between average daily PM10 concentrations and spatiotemporal predictors like meteorological, land use and source-related variables. National (8 models), provincial (32) and site-specific (44) RF models were developed to impute missing daily PM10 data. The annual national, provincial and site-specific RF cross-validation (CV) models explained on average 78%, 70% and 55% of ground-level PM10 concentrations, respectively. The spatial components of the national and provincial CV RF models explained on average 22% and 48%, while the temporal components of the national, provincial and site-specific CV RF models explained on average 78%, 68% and 57% of ground-level PM10 concentrations, respectively. This study demonstrates a feasible approach based on RF to impute missing measurement data in areas where data collection is sparse and incomplete.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3