A Simulation Analysis of Maternal Pelvic Floor Muscle

Author:

Xuan Rongrong,Yang Mingshuwen,Gao Yajie,Ren Shuaijun,Li Jialin,Yang Zhenglun,Song Yang,Huang Xu-Hao,Teo Ee-Chon,Zhu Jue,Gu YaodongORCID

Abstract

Pelvic floor disorder (PFD) is a common disease affecting the quality of life of middle-aged and elderly women. Pelvic floor muscle (PFM) damage is related to delivery mode, fetal size, and parity. Spontaneous vaginal delivery causes especially great damage to PFM. The purpose of this study was to summarize the characteristics of PFM action during the second stage of labor by collecting female pelvic MRI (magnetic resonance imaging) data and, further, to try to investigate the potential pathogenetic mechanism of PFD. A three-dimensional model was established to study the influence factors and characteristics of PFM strength. In the second stage of labor, the mechanical responses, possible damage, and the key parts of postpartum lesions of PFM due to the different fetal biparietal diameter (BPD) sizes were analyzed by finite element simulations. The research results showed that the peak stress and strain of PFM appeared at one-half of the delivery period and at the attachment point of the pubococcygeus to the skeleton. In addition, during the simulation process, the pubococcygeus was stretched by about 1.2 times and the levator ani muscle was stretched by more than two-fold. There was also greater stress and strain in the middle area of the levator ani muscle and pubococcygeus. According to the statistics, either being too young or in old maternal age will increase the probability of postpartum PFM injury. During delivery, the entire PFM underwent the huge deformation, in which the levator ani muscle and the pubococcygeus were seriously stretched and the attachment point between the pubococcygeus and the skeleton were the places with the highest probability of postpartum lesions.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3