Author:
Chen Can,Zhang Xiaobao,Jiang Daixi,Yan Danying,Guan Zhou,Zhou Yuqing,Liu Xiaoxiao,Huang Chenyang,Ding Cheng,Lan Lei,Huang Xihui,Li Lanjuan,Yang Shigui
Abstract
Previous studies have reported that temperature is the main meteorological factor associated with influenza activity. This study used generalized additive models (GAMs) to explore the relationship between temperature and influenza activity in China. From the national perspective, the average temperature (AT) had an approximately negative linear correlation with the incidence of influenza, as well as a positive rate of influenza H1N1 virus (A/H1N1). Every degree that the monthly AT rose, the influenza cases decreased by 2.49% (95%CI: 1.24%–3.72%). The risk of influenza cases reached a peak at −5.35 °C with RRs of 2.14 (95%CI: 1.38–3.33) and the monthly AT in the range of −5.35 °C to 18.31 °C had significant effects on the incidence of influenza. Every degree that the weekly AT rose, the positive rate of A/H1N1 decreased by 5.28% (95%CI: 0.35%–9.96%). The risk of A/H1N1 reached a peak at −3.14 °C with RRs of 4.88 (95%CI: 1.01–23.75) and the weekly AT in the range of −3.14 °C to 17.25 °C had significant effects on the incidence of influenza. Our study found that AT is negatively associated with influenza activity, especially for A/H1N1. These findings indicate that temperature could be integrated into the current influenza surveillance system to develop early warning systems to better predict and prepare for the risks of influenza.
Funder
the National Natural Science Foundation of China, the Mega-Project of National Science and Technology for the 12th and 13th Five-Year Plan of China
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
13 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献