Fabrication and Validation of an Economical, Programmable, Dual-Channel, Electronic Cigarette Aerosol Generator

Author:

Palazzolo Dominic L.ORCID,Caudill Jordan,Baron James,Cooper Kevin

Abstract

Vaping (inhalation of electronic cigarette-generated aerosol) is a public health concern. Due to recent spikes in adolescent use of electronic cigarettes (ECIGs) and vaping-induced illnesses, demand for scientific inquiry into the physiological effects of electronic cigarette (ECIG) aerosol has increased. For such studies, standardized and consistent aerosol production is required. Many labs generate aerosol by manually activating peristaltic pumps and ECIG devices simultaneously in a predefined manner. The tedium involved with this process (large puff number over time) and risk of error in keeping with puff topography (puff number, duration, interval) are less than optimal. Furthermore, excess puffing on an ECIG device results in battery depletion, reducing aerosol production, and ultimately, its chemical and physical nature. While commercial vaping machines are available, the cost of these machines is prohibitive to many labs. For these reasons, an economical and programmable ECIG aerosol generator, capable of generating aerosol from two atomizers simultaneously, was fabricated, and subsequently validated. Validation determinants include measurements of atomizer temperatures (inside and outside), electrical parameters (current, resistance and power) of the circuitry, aerosol particle distribution (particle counts and mass concentrations) and aerosol delivery (indexed by nicotine recovery), all during stressed conditions of four puffs/minute for 75 min (i.e., 300 puffs). Validation results indicate that the ECIG aerosol generator is better suited for experiments involving ≤100 puffs. Over 100 puffs, the amount of variation in the parameters measured tends to increase. Variations between channels are generally higher than variations within a channel. Despite significant variations in temperatures, electrical parameters, and aerosol particle distributions, both within and between channels, aerosol delivery remains remarkably stable for up to 300 puffs, yielding over 25% nicotine recovery for both channels. In conclusion, this programmable, dual-channel ECIG aerosol generator is not only affordable, but also allows the user to control puff topography and eliminate battery drain of ECIG devices. Consequently, this aerosol generator is valid, reliable, economical, capable of using a variety of E-liquids and amenable for use in a vast number of studies investigating the effects of ECIG-generated aerosol while utilizing a multitude of puffing regimens in a standardized manner.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3