Analysis of the Chemical and Physical Environmental Aspects that Promoted the Spread of SARS-CoV-2 in the Lombard Area

Author:

Dragone Roberto,Licciardi GiorgioORCID,Grasso GerardoORCID,Del Gaudio Costantino,Chanussot JocelynORCID

Abstract

Recent works have demonstrated that particulate matter (PM) and specific meteorological conditions played an important role in the airborne transmission of the SARS-CoV-1 and MERS-CoV. These studies suggest that these parameters could influence the transmission of SARS-CoV-2. In the present investigation, we sought to investigate the association between air pollution, meteorological data, and the Lombardy region COVID-19 outbreak caused by SARS-CoV-2. We considered the number of detected infected people at the regional and provincial scale from February to March 2020. Air pollution data were collected over the Lombardy region, nominally, sulphur dioxide, ammonia, nitrogen dioxide, nitrogen monoxide, carbon monoxide, ozone, and suspended particulate matter measuring less than 10 μm (PM10) and less than 2.5 μm (PM2.5). Meteorological data have been collected over the same region for temperature, relative humidity, and wind speed. In this work, we evaluated the combined impact of environmental pollutants and climate conditions on the COVID-19 outbreak. The analysis evidenced a positive correlation between spatial distribution of COVID-19 infection cases with high concentrations of suspended particulate matter and a negative relationship with ozone. Moreover, suspended particulate matter concentration peaks in February correlated positively with infection peaks according to the virus incubation period. The obtained results suggested that seasonal weather conditions and concentration of air pollutants seemed to influence COVID-19 epidemics in Lombardy region.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3