Abstract
Purpose: The purpose of this study was to investigate what opinions and perceptions people have about nursing and the role of nursing staff in nursing homes (NHs) on Social Networking Service (SNS) by analyzing large-scale data through social big-data analysis. Methods: This study investigated changes in perception related to nursing and nursing staff in NHs during the COVID-19 pandemic era using target channels (blogs, cafes, Instagram, communities, Twitter, etc.). Data were collected on the channel from 12 September 2019 to 11 September 2020, 6 months before and after 12 March 2020 when the COVID-19 pandemic was declared. Selected keywords included “nursing,” “nurse,” and “nursing staff,” and included words were “long-term care settings,” “geriatric hospital,” and “nursing home.” Text mining, opinion mining, and social network analysis were conducted. Results: After the COVID-19 pandemic, the frequency of keywords increased about 1.5 times compared to before. In March 2020 when the COVID-19 pandemic was declared, the negative phrase “be infected” ranked number one, resulting in a sharp 8% rise in the percentage of negative words in that month. The related words that have risen in rank significantly, or were newly ranked in the Top 30 after the pandemic, were related with COVID-19. Conclusion: The public began to realize the role of nursing staff in the prevention and management of mass infection in NHs and the importance of nursing staff after the pandemic. Further studies should examine the perceptions of those who have received nursing services and include a wide range of foreign channels.
Funder
National Research Foundation of Korea
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference48 articles.
1. Corona 19 (COVID-19) Real-Time Status Boardhttps://coronaboard.kr/
2. Timeline: WHO’s COVID-19 Responsehttps://www.who.int/emergencies/diseases/novel-coronavirus-2019/interactive-timeline#event-71
3. Major Population Indicatorshttps://kosis.kr/statHtml/statHtml.do?orgId=101&tblId=DT_1YL20631&conn_path=I2
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献