Characterization and Transcriptome Analysis of a Long-Chain n-Alkane-Degrading Strain Acinetobacter Pittii SW-1

Author:

Kong Weina,Zhao Cheng,Gao Xingwang,Wang Liping,Tian Qianqian,Liu Yu,Xue Shuwen,Han Zhuang,Chen Fulin,Wang Shiwei

Abstract

Strain sw-1, isolated from 7619-m seawater of the Mariana Trench, was identified as Acinetobacter pittii by 16S rRNA gene and whole-genome sequencing. A. pittii sw-1 was able to efficiently utilize long-chain n-alkanes (C18–C36), but not short- and medium-chain n-alkanes (C8–C16). The degradation rate of C20 was 91.25%, followed by C18, C22, C24, C32, and C36 with the degradation rates of 89.30%, 84.03%, 80.29%, 30.29%, and 13.37%, respectively. To investigate the degradation mechanisms of n-alkanes for this strain, the genome and the transcriptome analyses were performed. Four key alkane hydroxylase genes (alkB, almA, ladA1, and ladA2) were identified in the genome. Transcriptomes of strain sw-1 grown in C20 or CH3COONa (NaAc) as the sole carbon source were compared. The transcriptional levels of alkB and almA, respectively, increased 78.28- and 3.51-fold in C20 compared with NaAc, while ladA1 and ladA2 did not show obvious change. The expression levels of other genes involved in the synthesis of unsaturated fatty acids, permeases, membrane proteins, and sulfur metabolism were also upregulated, and they might be involved in n-alkane uptake. Reverse transcription quantitative polymerase chain reaction (RT-qPCR) confirmed that alkB expression was significantly induced by C20, C24, and C32, and almA induction extent by C24 and C32 was higher than that with C20. Furthermore, ladA2 expression was only induced by C32, and ladA1 expression was not induced by any of n-alkanes. In addition, A. pittii sw-1 could grow with 0%–3% NaCl or 8 out of 10 kinds of the tested heavy metals and degrade n-alkanes at 15 °C. Taken together, these results provide comprehensive insights into the degradation of long-chain n-alkanes by Acinetobacter isolated from the deep ocean environment.

Funder

National Natural Science Foundation of China

Nature Science Foundation of Shaanxi Province, China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3