Abstract
Accurate predictions of COVID-19 epidemic dynamics may enable timely organizational interventions in high-risk regions. We exploited the interconnection of the Fresenius Medical Care (FMC) European dialysis clinic network to develop a sentinel surveillance system for outbreak prediction. We developed an artificial intelligence-based model considering the information related to all clinics belonging to the European Nephrocare Network. The prediction tool provides risk scores of the occurrence of a COVID-19 outbreak in each dialysis center within a 2-week forecasting horizon. The model input variables include information related to the epidemic status and trends in clinical practice patterns of the target clinic, regional epidemic metrics, and the distance-weighted risk estimates of adjacent dialysis units. On the validation dates, there were 30 (5.09%), 39 (6.52%), and 218 (36.03%) clinics with two or more patients with COVID-19 infection during the 2-week prediction window. The performance of the model was suitable in all testing windows: AUC = 0.77, 0.80, and 0.81, respectively. The occurrence of new cases in a clinic propagates distance-weighted risk estimates to proximal dialysis units. Our machine learning sentinel surveillance system may allow for a prompt risk assessment and timely response to COVID-19 surges throughout networked European clinics.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献