Near-Source Risk Functions for Particulate Matter Are Critical When Assessing the Health Benefits of Local Abatement Strategies

Author:

Segersson David,Johansson ChristerORCID,Forsberg BertilORCID

Abstract

When mortality or other health outcomes attributable to fine particulate matter (PM2.5) are estimated, the same exposure–response function (ERF) is usually assumed regardless of the source and composition of the particles, and independently of the spatial resolution applied in the exposure model. While several recent publications indicate that ERFs based on exposure models resolving within-city gradients are steeper per concentration unit (μgm−3), the ERF for PM2.5 recommended by the World Health Organization does not reflect this observation and is heavily influenced by studies based on between-city exposure estimates. We evaluated the potential health benefits of three air pollution abatement strategies: electrification of light vehicles, reduced use of studded tires, and introduction of congestion charges in Stockholm and Gothenburg, using different ERFs. We demonstrated that using a single ERF for PM2.5 likely results in an underestimation of the effect of local measures and may be misleading when evaluating abatement strategies. We also suggest applying ERFs that distinguish between near-source and regional contributions of exposure to PM2.5. If separate ERFs are applied for near-source and regional PM2.5, congestion charges as well as a reduction of studded tire use are estimated to be associated with a significant reduction in the mortality burden in both Gothenburg and Stockholm. In some scenarios the number of premature deaths is more than 10 times higher using separate ERFs in comparison to using a single ERF irrespective of sources as recommended by the WHO. For electrification, the net change in attributable deaths is small or within the uncertainty range depending on the choice of ERF.

Funder

Naturvårdsverket

Swedish Transport Administration

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference42 articles.

1. Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

2. Global mortality from outdoor fine particle pollution generated by fossil fuel combustion: Results from GEOS-Chem

3. Air Quality Guidelines: Global Update 2005: Particulate Matter, Ozone, Nitrogen Dioxide, and Sulfur Dioxide,2006

4. Recommendations for Concentration–Response Functions for Cost–Benefit Analysis of Particulate Matter, Ozone and Nitrogen Dioxide,2013

5. Long-term air pollution exposure and cardio- respiratory mortality: a review

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3