Abstract
When mortality or other health outcomes attributable to fine particulate matter (PM2.5) are estimated, the same exposure–response function (ERF) is usually assumed regardless of the source and composition of the particles, and independently of the spatial resolution applied in the exposure model. While several recent publications indicate that ERFs based on exposure models resolving within-city gradients are steeper per concentration unit (μgm−3), the ERF for PM2.5 recommended by the World Health Organization does not reflect this observation and is heavily influenced by studies based on between-city exposure estimates. We evaluated the potential health benefits of three air pollution abatement strategies: electrification of light vehicles, reduced use of studded tires, and introduction of congestion charges in Stockholm and Gothenburg, using different ERFs. We demonstrated that using a single ERF for PM2.5 likely results in an underestimation of the effect of local measures and may be misleading when evaluating abatement strategies. We also suggest applying ERFs that distinguish between near-source and regional contributions of exposure to PM2.5. If separate ERFs are applied for near-source and regional PM2.5, congestion charges as well as a reduction of studded tire use are estimated to be associated with a significant reduction in the mortality burden in both Gothenburg and Stockholm. In some scenarios the number of premature deaths is more than 10 times higher using separate ERFs in comparison to using a single ERF irrespective of sources as recommended by the WHO. For electrification, the net change in attributable deaths is small or within the uncertainty range depending on the choice of ERF.
Funder
Naturvårdsverket
Swedish Transport Administration
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献