Magnetism and Grain-Size Distribution of Particles Deposited on the Surface of Urban Trees in Lanzhou City, Northwestern China

Author:

Wang Bo,Zhang Xiaochen,Gu Chenming,Zhang Mei,Zhao Yuanhao,Jia Jia

Abstract

Studies on the variation in the particulate matter (PM) content, Saturation Isothermal Remanent Magnetization (SIRM), and particle grain-size distribution at a high spatial resolution are helpful in evaluating the important role of urban forests in PM removal. In this study, the trees located in dense urban forests (T0) retained more PM than trees located in open spaces (T1–T4); the SIRM and PM weight of T0 were 1.54–2.53 and 1.04–1.47 times more than those of T1–T4, respectively. In addition, the SIRM and PM weight decreased with increasing distance to the road, suggesting that distance from pollution sources plays a key role in reducing the air concentration of PM. The different grain-size components were determined from frequency curve plots using a laser particle-size analyzer. A unimodal spectrum with a major peak of approximately 20 μm and a minor peak between 0.1 and 1 μm was observed, indicating that a large proportion of fine air PM was retained by the needles of the study trees. Additionally, more <2.5 μm size fraction particles were observed at the sampling site near the traffic source but, compared to a tree in a row of trees, the percentage of the >10 μm size fraction for the tree in the dense urban forest was higher, indicating that the particles deposited on the needle surface originating from traffic sources were finer than those from natural atmospheric dust. The exploration of the variation in the PM weight, SIRM, and grain size of the particles deposited on the needle surface facilitates monitoring the removal of PM by urban forests under different environmental conditions (e.g., in closed dense urban forests and in open roadside spaces), different distances to roads, and different sampling heights above the ground.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3