Using Multilevel Regression and Poststratification to Estimate Physical Activity Levels from Health Surveys

Author:

Christofoletti MarinaORCID,Benedetti Tânia R. B.ORCID,Mendes Felipe G.ORCID,Carvalho Humberto M.ORCID

Abstract

Background: Large-scale health surveys often consider sociodemographic characteristics and several health indicators influencing physical activity that often vary across subpopulations. Data in a survey for some small subpopulations are often not representative of the larger population. Objective: We developed a multilevel regression and poststratification (MRP) model to estimate leisure-time physical activity across Brazilian state capitals and evaluated whether the MRP outperforms single-level regression estimates based on the Brazilian cross-sectional national survey VIGITEL (2018). Methods: We used various approaches to compare the MRP and single-level model (complete-pooling) estimates, including cross-validation with various subsample proportions tested. Results: MRP consistently had predictions closer to the estimation target than single-level regression estimations. The mean absolute errors were smaller for the MRP estimates than single-level regression estimates with smaller sample sizes. MRP presented substantially smaller uncertainty estimates compared to single-level regression estimates. Overall, the MRP was superior to single-level regression estimates, particularly with smaller sample sizes, yielding smaller errors and more accurate estimates. Conclusion: The MRP is a promising strategy to predict subpopulations’ physical activity indicators from large surveys. The observations present in this study highlight the need for further research, which could, potentially, incorporate more information in the models to better interpret interactions and types of activities across target populations.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3