A Machine Learning Approach to Identify Predictors of Potentially Inappropriate Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) Use in Older Adults with Osteoarthritis

Author:

Patel JayeshkumarORCID,Ladani AmitORCID,Sambamoorthi Nethra,LeMasters Traci,Dwibedi Nilanjana,Sambamoorthi Usha

Abstract

Evidence from some studies suggest that osteoarthritis (OA) patients are often prescribed non-steroidal anti-inflammatory drugs (NSAIDs) that are not in accordance with their cardiovascular (CV) or gastrointestinal (GI) risk profiles. However, no such study has been carried out in the United States. Therefore, we sought to examine the prevalence and predictors of potentially inappropriate NSAIDs use in older adults (age > 65) with OA using machine learning with real-world data from Optum De-identified Clinformatics® Data Mart. We identified a retrospective cohort of eligible individuals using data from 2015 (baseline) and 2016 (follow-up). Potentially inappropriate NSAIDs use was identified using the type (COX-2 selective vs. non-selective) and length of NSAIDs use and an individual’s CV and GI risk. Predictors of potentially inappropriate NSAIDs use were identified using eXtreme Gradient Boosting. Our study cohort comprised of 44,990 individuals (mean age 75.9 years). We found that 12.8% individuals had potentially inappropriate NSAIDs use, but the rate was disproportionately higher (44.5%) in individuals at low CV/high GI risk. Longer duration of NSAIDs use during baseline (AOR 1.02; 95% CI:1.02–1.02 for both non-selective and selective NSAIDs) was associated with a higher risk of potentially inappropriate NSAIDs use. Additionally, individuals with low CV/high GI (AOR 1.34; 95% CI:1.20–1.50) and high CV/low GI risk (AOR 1.61; 95% CI:1.34–1.93) were also more likely to have potentially inappropriate NSAIDs use. Heightened surveillance of older adults with OA requiring NSAIDs is warranted.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3