Green-Blue Spaces and Population Density versus COVID-19 Cases and Deaths in Poland

Author:

Ciupa TadeuszORCID,Suligowski Roman

Abstract

In the last year, in connection with the COVID-19 pandemic caused by the SARS-CoV-2 coronavirus, scientific papers have appeared in which the authors are trying to identify factors (including environmental) favoring the spread of this disease. This paper presents the spatial differentiation in the total number of COVID-19 cases and deaths during the full year (March 2020–March 2021) of the SARS-CoV-2 pandemic in Poland versus green-blue spaces (green—i.a. forests, orchards, meadows and pastures, recreational and rest areas, biologically active arable land; blue—lakes and artificial water reservoirs, rivers, ecological areas and internal waters) and population density. The analysis covers 380 counties, including 66 cities. This study used daily reports on the progress of the pandemic in Poland published by the Ministry of Health of the Republic of Poland and unique, detailed data on 24 types of land use available in the Statistics Poland database. Statistical relationships were determined between the above-mentioned environmental variables and the variables characterizing COVID-19 (cases and deaths). Various basic types of regression models were analysed. The optimal model was selected, and the determination coefficient, significance level and the values of the parameters of these relationships, together with the estimation error, were calculated. The obtained results indicated that the higher the number of green-blue spaces in individual counties, the lower the total number of COVID-19 infections and deaths. These relationships were described by logarithmic and homographic models. In turn, an increase in the population density caused an increase in COVID-19 cases and deaths, according to the power model. These results can be used in the current analysis of the spread of the pandemic, including the location of potential outbreaks. In turn, the developed models can be used as a tool in forecasting the development of the pandemic and making decisions about the implementation of preventive measures.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3