Abstract
Previously, miR-1, miR-122, miR-126, miR-132, miR-133, and miR-370 were found to be related to coronary artery disease (CAD) progression. However, their relationship with subclinical atherosclerosis, especially in subjects with metabolic syndrome, is unknown. Therefore, our aim was to determine their relationship with arterial markers of subclinical atherosclerosis. Metabolic syndrome subjects (n = 182) with high cardiovascular risk but without overt cardiovascular disease (CVD) were recruited from the Lithuanian High Cardiovascular Risk (LitHiR) primary prevention program. The ardio-ankle vascular index (CAVI), augmentation index normalized to a heart rate of 75 bpm (AIxHR75), aortic pulse wave velocity (AoPWV), and carotid artery stiffness were assessed. MicroRNAs (miRs) were analyzed in serum. Pearson correlation and a univariate linear regression t-test showed that miR-1, miR-133b, and miR-133a were negatively associated with CAVI mean, whereas miR-122 was positively associated. MiR-1, miR-133b and miR-133a, and miR-145 were negatively associated with AIxHR75. MiR-122 correlated negatively with AoPWV. In multivariate linear regression models, miR-133b and miR-122 predicted CAVImean, miR-133 predicted AIxHR75, and miR-122 predicted AoPWV. MiR-132 predicted right carotid artery stiffness, and miR-1 predicted left carotid artery stiffness. The addition of smoking to miR-133b and miR-122 enhanced the prediction of CAVI. Age and triglycerides enhanced the prediction of AoPWV by miR-122. A cluster of four miRs are related to subclinical atherosclerosis in subjects with metabolic syndrome. Combined, they may have a more substantial diagnostic or prognostic value than any single miR. Future follow-up studies are needed to establish their clinical relevance.
Funder
Research Council of Lithuania
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Reference102 articles.
1. Heart disease and stroke statistics—At-a-glance heart disease, stroke and other cardiovascular diseases heart disease;Update;Stroke Cardiovasc. Dis. Risk Factors,2015
2. Cardiovascular disease and bridging the diagnostic gap;Watchira;S. D. Med. J. South Dakota State Med. Assoc.,2013
3. MicroRNAs in the Atherosclerotic Plaque
4. Epidemiological Approaches to Heart Disease: The Framingham Study
5. Risk scoring in the assessment of cardiovascular risk