Author:
Yu Xiangwei,Cabrera-Reina Alejandro,Graells Moisès,Miralles-Cuevas Sara,Pérez-Moya Montserrat
Abstract
This work addresses the dosage of H2O2 in photo-Fenton processes and the monitoring of Dissolved oxygen (DO) that can be used to drive the dosage of H2O2. The objective of this work is to show that a smarter monitoring of a process variable such as DO (for which on-line measurement can be inexpensively obtained) enables the proposal and implementation of efficient dosage strategies. The work explores the application of a recent proposed strategy consisting of: (i) initial H2O2 addition, (ii) continuous H2O2 addition until a DO set up is reached, and (iii) automatic H2O2 addition by an on-off control system based on DO slope monitoring, and applies it to the treatment of different individual contaminants and their mixtures (paracetamol and sulfamethazine). The assays performed following this dosage strategy showed improved values of TOC removed per H2O2 consumed. For the case of sulfamethazine, this improvement increased up to 25–35% with respect to the efficiency obtained without dosage. Furthermore, a deeper analysis of the results allowed detecting and assessing the opportunity to redesign the dosage scheme and reduce its complexity and the number of control parameters. The promising results obtained are discussed in regard of future research into further increasing the simplicity and robustness of this generalized control strategy that improves the applicability of the photo-Fenton process by reducing its operating costs and increasing automation.
Funder
Ministerio de Ciencia e Innovación de España
China Scholarship Council
Spanish Ministry of Science and Innovation
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献