An Interaction-Based Bayesian Network Framework for Surgical Workflow Segmentation

Author:

Luo Nana,Nara AtsushiORCID,Izumi Kiyoshi

Abstract

Recognizing and segmenting surgical workflow is important for assessing surgical skills as well as hospital effectiveness, and plays a crucial role in maintaining and improving surgical and healthcare systems. Most evidence supporting this remains signal-, video-, and/or image-based. Furthermore, casual evidence of the interaction between surgical staff remains challenging to gather and is largely absent. Here, we collected the real-time movement data of the surgical staff during a neurosurgery to explore cooperation networks among different surgical roles, namely surgeon, assistant nurse, scrub nurse, and anesthetist, and to segment surgical workflows to further assess surgical effectiveness. We installed a zone position system (ZPS) in an operating room (OR) to effectively record high-frequency high-resolution movements of all surgical staff. Measuring individual interactions in a closed, small area is difficult, and surgical workflow classification has uncertainties associated with the surgical staff in terms of their varied training and operation skills, patients in terms of their initial states and biological differences, and surgical procedures in terms of their complexities. We proposed an interaction-based framework to recognize the surgical workflow and integrated a Bayesian network (BN) to solve the uncertainty issues. Our results suggest that the proposed BN method demonstrates good performance with a high accuracy of 70%. Furthermore, it semantically explains the interaction and cooperation among surgical staff.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference45 articles.

1. Multi-Task Temporal Convolutional Networks for Joint Recognition of Surgical Phases and Steps in Gastric Bypass Procedures;Ramesh;arXiv,2021

2. Real-time segmentation and tracking of excised corneal contour by deep neural networks for DALK surgical navigation

3. Real-time automatic surgical phase recognition in laparoscopic sigmoidectomy using the convolutional neural network-based deep learning approach

4. Effectiveness in professional organizations: The impact of surgeons and surgical staff organizations on the quality of care in hospitals;Flood;Health Serv. Res.,1982

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Surgical phase recognition in laparoscopic videos using gated capsule autoencoder model;Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization;2023-04-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3