A Velostat-Based Pressure-Sensitive Mat for Center-of-Pressure Measurements: A Preliminary Study

Author:

Martinez-Cesteros JavierORCID,Medrano-Sanchez CarlosORCID,Plaza-Garcia InmaculadaORCID,Igual-Catalan RaulORCID,Albiol-Pérez SergioORCID

Abstract

Center-of-pressure (CoP) displacements play a key role in studies assessing postural stability. The accepted instrument to measure CoP trajectories is the force platform, but pressure-sensitive mats (PSMs) are an alternative composed of a matrix of sensitive cells. A typical cell comprises two electrodes with piezoresistive material in between, while a force platform has a force sensor at each of its corners. In this paper, we compare a homemade Velostat-based PSM and an affordable commercial mat with a commercial force platform in a test series with 42 healthy volunteers in single-legged trials (29 males, 13 females; height 1.74 (0.09) m, weight 74.3 (16.34) kg, age 31.21 (12.66) years). The aim of the research was to perform a preliminary study of the performance of our prototype to measure CoP, and more specifically, the standard deviation of the CoP path on both axes, the medial–lateral and anterior–posterior. We could thus discover several improvements for future clinical applications. The intraclass correlation coefficient (ICC) for agreement in the base experiment showed a moderate value for the prototype (0.38 to 0.63) and lower values for the commercial mat (0.11 to 0.12). However, we identified several factors that were relevant to improve ICC and reduce error by considering several processing options: (i) the known crosstalk problem between cells that appears in this kind of mats must be eliminated; (ii) the response time of the sensor has to be taken into account; and (iii) increasing the mat resolution also improves agreement. Therefore, as future work, we plan to test the improved version of the prototype in a clinical environment.

Funder

Ministerio de Ciencia, Innovación y Universidades

Instituto de Salud Carlos III, Spanish Government / European Regional Development Fund, A way to build Europe

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3