Exercise Fat Oxidation Is Positively Associated with Body Fatness in Men with Obesity: Defying the Metabolic Flexibility Paradigm

Author:

Chávez-Guevara Isaac A.ORCID,Hernández-Torres Rosa P.ORCID,Trejo-Trejo Marina,González-Rodríguez EverardoORCID,Moreno-Brito Verónica,Wall-Medrano AbrahamORCID,Pérez-León Jorge A.ORCID,Ramos-Jiménez ArnulfoORCID

Abstract

Obesity is thought to be associated with a reduced capacity to increase fat oxidation in response to physical exercise; however, scientific evidence supporting this paradigm remains scarce. This study aimed to determine the interrelationship of different submaximal exercise metabolic flexibility (Metflex) markers and define its association with body fatness on subjects with obesity. Twenty-one male subjects with obesity performed a graded-intensity exercise protocol (Test 1) during which cardiorespiratory fitness (CRF), maximal fat oxidation (MFO) and its corresponding exercise intensity (FATmax) were recorded. A week afterward, each subject performed a 60-min walk (treadmill) at FATmax (Test 2), and the resulting fat oxidation area under the curve (TFO) and maximum respiratory exchange ratio (RERpeak) were recorded. Blood lactate (LAb) levels was measured during both exercise protocols. Linear regression analysis was used to study the interrelationship of exercise Metflex markers. Pearson’s correlation was used to evaluate all possible linear relationships between Metflex and anthropometric measurement, controlling for CRF). The MFO explained 38% and 46% of RERpeak and TFO’s associated variance (p < 0.01) while TFO and RERpeak were inversely related (R2 = 0.54, p < 0.01). Body fatness positively correlated with MFO (r = 0.64, p < 0.01) and TFO (r = 0.63, p < 0.01) but inversely related with RERpeak (r = −0.67, p < 0.01). This study shows that MFO and RERpeak are valid indicators of TFO during steady-state exercise at FATmax. The fat oxidation capacity is directly associated with body fatness in males with obesity.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3