Integrating Spatial Modelling and Space–Time Pattern Mining Analytics for Vector Disease-Related Health Perspectives: A Case of Dengue Fever in Pakistan

Author:

Naqvi Syed Ali AsadORCID,Sajjad MuhammadORCID,Waseem Liaqat AliORCID,Khalid ShoaibORCID,Shaikh Saima,Kazmi Syed Jamil Hasan

Abstract

The spatial–temporal assessment of vector diseases is imperative to design effective action plans and establish preventive strategies. Therefore, such assessments have potential public health planning-related implications. In this context, we here propose an integrated spatial disease evaluation (I-SpaDE) framework. The I-SpaDE integrates various techniques such as the Kernel Density Estimation, the Optimized Hot Spot Analysis, space–time assessment and prediction, and the Geographically Weighted Regression (GWR). It makes it possible to systematically assess the disease concentrations, patterns/trends, clustering, prediction dynamics, and spatially varying relationships between disease and different associated factors. To demonstrate the applicability and effectiveness of the I-SpaDE, we apply it in the second largest city of Pakistan, namely Lahore, using Dengue Fever (DF) during 2007–2016 as an example vector disease. The most significant clustering is evident during the years 2007–2008, 2010–2011, 2013, and 2016. Mostly, the clusters are found within the city’s central functional area. The prediction analysis shows an inclination of DF distribution from less to more urbanized areas. The results from the GWR show that among various socio-ecological factors, the temperature is the most significantly associated with the DF followed by vegetation and built-up area. While the results are important to understand the DF situation in the study area and have useful implications for public health planning, the proposed framework is flexible, replicable, and robust to be utilized in other similar regions, particularly in developing countries in the tropics and sub-tropics.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3