Geographical Detector-Based Spatial Modeling of the COVID-19 Mortality Rate in the Continental United States

Author:

Yue HanORCID,Hu TaoORCID

Abstract

Investigating the spatial distribution patterns of disease and suspected determinants could help one to understand health risks. This study investigated the potential risk factors associated with COVID-19 mortality in the continental United States. We collected death cases of COVID-19 from 3108 counties from 23 January 2020 to 31 May 2020. Twelve variables, including demographic (the population density, percentage of 65 years and over, percentage of non-Hispanic White, percentage of Hispanic, percentage of non-Hispanic Black, and percentage of Asian individuals), air toxins (PM2.5), climate (precipitation, humidity, temperature), behavior and comorbidity (smoking rate, cardiovascular death rate) were gathered and considered as potential risk factors. Based on four geographical detectors (risk detector, factor detector, ecological detector, and interaction detector) provided by the novel Geographical Detector technique, we assessed the spatial risk patterns of COVID-19 mortality and identified the effects of these factors. This study found that population density and percentage of non-Hispanic Black individuals were the two most important factors responsible for the COVID-19 mortality rate. Additionally, the interactive effects between any pairs of factors were even more significant than their individual effects. Most existing research examined the roles of risk factors independently, as traditional models are usually unable to account for the interaction effects between different factors. Based on the Geographical Detector technique, this study’s findings showed that causes of COVID-19 mortality were complex. The joint influence of two factors was more substantial than the effects of two separate factors. As the COVID-19 epidemic status is still severe, the results of this study are supposed to be beneficial for providing instructions and recommendations for the government on epidemic risk responses to COVID-19.

Funder

NSF

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3