An Investigation of the Wild Rat Crown Incisor as an Indicator of Lead (Pb) Exposure Using Inductively Couple Plasma Mass Spectrometry (ICP-MS) and Laser Ablation ICP-MS

Author:

Kataba AndrewORCID,Nakayama Shouta M. M.,Nakata HokutoORCID,Toyomaki Haruya,Yohannes Yared B.,Yabe John,Muzandu Kaampwe,Zyambo Golden,Kubota Ayano,Matsukawa TakehisaORCID,Yokoyama Kazuhito,Ikenaka Yoshinori,Ishizuka Mayumi

Abstract

Lead (Pb) is a metal toxicant of great public health concern. The present study investigated the applicability of the rat incisor in Pb exposure screening. The levels of lead in teeth (Pb-T) in the crown and root of incisors in laboratory Pb-exposed Sprague Dawley rats were quantified using inductively coupled plasma mass spectrometry (ICP-MS). The crown accumulated much Pb-T than the root of the Sprague Dawley rat incisor. The levels of lead in blood (Pb-B) were positively correlated with the Pb-T in the crown and root incisors of the Sprague Dawley rats. As an application of the Pb-T crown results in experimental rats, we subsequently analyzed the Pb-T in the crown incisors of Pb-exposed wild rats (Rattus rattus) sampled from residential sites within varying distances from an abandoned lead–zinc mine. The Pb-T accumulation in the crown of incisors of R. rattus rats decreased with increased distance away from the Pb–Zn mine. Furthermore, the Pb-T was strongly correlated (r = 0.85) with the Pb levels in the blood. Laser ablation ICP-MS Pb-T mappings revealed a homogenous distribution of Pb in the incisor with an increased intensity of Pb-T localized in the tip of the incisor crown bearing an enamel surface in both Sprague Dawley and R. rattus rats. These findings suggest that Pb-T in the crown incisor may be reflective of the rat’s environmental habitat, thus a possible indicator of Pb exposure.

Funder

Ministry of Education, Culture, Sports, Science and Technology

Japan Society for the Promotion of Science

Japan Prize Foundation

Hokkaido University

Japan Science and Technology Agency

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3