Assessment of the Exposure to Gradient Magnetic Fields Generated by MRI Tomographs: Measurement Method, Verification of Limits and Clearance Areas through a Web-Based Platform

Author:

Di Liberto Riccardo,Andreuccetti Daniele,Comelli MorenoORCID,Burriesci Giancarlo

Abstract

This work is the result of a campaign of measures of exposure levels to magnetic field gradients (GMF) generated by magnetic resonance imaging (MRI) tomographs, to which both healthcare staff and any persons accompanying patients who remain inside the magnet room are exposed while performing a diagnostic Investigation. The study was conducted on three MRI tomographs with a static magnetic induction field up to 1.5 T installed in two hospitals of Lombardy. The study aims to characterize electromagnetic emissions within the magnet room and the definition of a measurement method suitable for assessing the level of exposure of healthcare personnel and any persons accompanying patients. The measurements performed concerned the determination of the weighted peak index for magnetic induction, due to the diagnostic GMF, relating to the action levels for the workers and the reference levels for the general population, in force in the European Union. Thanks to the defined experimental setup, the use of two different measuring instruments, and the software resources of the WEBNIR platform, it was possible to identify, for both categories of exposed persons, the “clearance” space, i.e., the distance from the magnet of the tomograph that guarantees health protection concerning the exposure to GMF, according to the indications of the standards in force. The method used showed that the exposure levels to GMF are substantially safe for professionally exposed workers who do not carry specific risks. For workers particularly sensitive to the specific risk, as well as to individuals part of the population, it is however advisable to maintain a distance from the magnet of about one meter to prevent sensorial neuromuscular stimulation effects.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3