Biomechanical Characteristics between Bionic Shoes and Normal Shoes during the Drop-Landing Phase: A Pilot Study

Author:

Zhou Huiyu,Chen Chaoyi,Xu Datao,Ugbolue Ukadike Chris,Baker Julien S.ORCID,Gu YaodongORCID

Abstract

With the development of unstable footwear, more research has focused on the advantages of this type of shoe. This type of shoe could improve the muscle function of the lower limb and prevent injury risks in dynamic situations. Therefore, the purpose of this study was to investigate differences in lower-limb kinetics and kinematics based on single-leg landing (SLL) using normal shoes (NS) and bionic shoes (BS). The study used 15 male subject volunteers (age 23.4 ± 1.14 years, height 177.6 ± 4.83cm, body weight (BW) 73.6 ± 7.02 kg). To ensure the subject standardization of the participants, there were several inclusion criteria used for selection. There were two kinds of experimental shoes used in the landing experiment to detect the change of lower limbs when a landing task was performed. Kinetics and kinematic data were collected during an SLL task, and statistical parametric mapping (SPM) analysis was used to evaluate the differences between NS and BS. We found that the flexion and extension angles of the knee (p = 0.004) and hip (p = 0.046, p = 0.018) joints, and the dorsiflexion and plantarflexion of ankle (p = 0.031) moment were significantly different in the sagittal planes. In the frontal plane, the eversion and inversion of the ankle (p = 0.016), and the abduction and adduction of knee (p = 0.017, p = 0.007) angle were found significant differences. In the horizontal plane, the external and internal rotation of hip (p = 0.036) and knee (p < 0.001, p = 0.029) moment were found significant differences, and knee angle (p = 0.043) also. According to our results, we conclude that using BS can cause bigger knee and hip flexion than NS. Also, this finding indicates that BS might be considered to reduce lower-limb injury risk during the SLL phase.

Funder

Key Project of the National Social Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3