Insights into the Pollutant Removal Performance of Stormwater Green Infrastructures: A Case Study of Detention Basins and Retention Ponds

Author:

Jeon Seol,Kim Siyeon,Lee Moonyoung,An Heejin,Jung Kichul,Um Myoung-JinORCID,An KyungjinORCID,Park DaeryongORCID

Abstract

The quality of water has deteriorated due to urbanization and the occurrence of urban stormwater runoff. To solve this problem, this study investigated the pollutant reduction effects from the geometric and hydrological factors of green infrastructures (GIs) to more accurately design GI models, and evaluated the factors that are required for such a design. Among several GIs, detention basins and retention ponds were evaluated. This study chose the inflow, outflow, total suspended solids (TSS), total phosphorus (TP), watershed area, GI area (bottom area in detention basins and permanent pool surface area in retention ponds), and GI volume (in both detention basins and retention ponds) for analysis and applied both ordinary least squares (OLS) regression and multiple linear regression (MLR). The geometric factors do not vary within each GI, but there may be a bias due to the number of stormwater events. To solve this problem, three methods that involved randomly extracting data with a certain range and excluding outliers were applied to the models. The accuracies of these OLS and MLR models were analyzed through the percentage bias (PBIAS), Nash-Sutcliffe efficiency (NSE), and RMSE-observations standard deviation ratio (RSR). The results of this study suggest that models which consider the influent concentration combined with the hydrological and GI geometric parameters have better correlations than models that consider only a single parameter.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference32 articles.

1. Performance evaluation of various stormwater best management practices

2. Treatment Wetlands;Kadlec,1996

3. Adapting the Relaxed Tanks-in-Series Model for Stormwater Wetland Water Quality Performance

4. Retention pond performance: Examples from the international stormwater BMP database;Barrett,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3