Development of IoT-Based Particulate Matter Monitoring System for Construction Sites

Author:

Kim HyunsikORCID,Tae Sungho,Zheng Pengfei,Kang Geonuk,Lee HanseungORCID

Abstract

Particulate matters (PMs) generated on construction sites can pose serious health risks to field workers and residents living near construction sites. PMs are generated in a wide range of locations; therefore, they must be managed in real time at various locations within construction sites for practical management of the PMs. However, no such systems exist currently. Therefore, this study aims to develop a system that can manage PMs in real time at multiple locations in a construction site using the Internet of Things technology. Accordingly, measuring instrument, network, and program services were developed as system components, while considering the characteristics of construction sites, and the construction site PM monitoring system was developed by integrating these components. Finally, performance certification and field application tests were performed to verify the developed system. The construction site PM monitoring system (CPMS) achieved grade 1 for reproducibility, relative precision, and data acquisition rate, and grade 2 for accuracy and coefficient of determination. Thus, it received a performance certification of grade 2, in total. In particular, regarding accuracy, which is a shortcoming of the light-scattering method and represents the accuracy of measurements, the CPMS was found to have an accuracy of 74.2%.

Funder

National Research Foundation of Korea

Korea Agency for Infrastructure Technology Advancement

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference38 articles.

1. Effect of construction dust on urban PM2.5 emission characteristics: A case study of the main urban area of Chongqing, China;Du;Nat. Environ. Pollut. Technol.,2016

2. Dust pollution control on construction sites: Awareness and self-responsibility of managers

3. Calculation Methods of Emission Factors and Emissions of Fugitive Particulate Matter in South Korean Construction Sites

4. The construction dust-induced occupational health risk using Monte-Carlo simulation

5. Air Quality Guidelines,2005

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3