Combinatorial K-Means Clustering as a Machine Learning Tool Applied to Diabetes Mellitus Type 2

Author:

Nedyalkova MiroslavaORCID,Madurga SergioORCID,Simeonov VasilORCID

Abstract

A new original procedure based on k-means clustering is designed to find the most appropriate clinical variables able to efficiently separate into groups similar patients diagnosed with diabetes mellitus type 2 (DMT2) and underlying diseases (arterial hypertonia (AH), ischemic heart disease (CHD), diabetic polyneuropathy (DPNP), and diabetic microangiopathy (DMA)). Clustering is a machine learning tool for discovering structures in datasets. Clustering has been proven to be efficient for pattern recognition based on clinical records. The considered combinatorial k-means procedure explores all possible k-means clustering with a determined number of descriptors and groups. The predetermined conditions for the partitioning were as follows: every single group of patients included patients with DMT2 and one of the underlying diseases; each subgroup formed in such a way was subject to partitioning into three patterns (good health status, medium health status, and degenerated health status); optimal descriptors for each disease and groups. The selection of the best clustering is obtained through the parameter called global variance, defined as the sum of all variance values of all clinical variables of all the clusters. The best clinical parameters are found by minimizing this global variance. This methodology has to identify a set of variables that are assumed to separate each underlying disease efficiently in three different subgroups of patients. The hierarchical clustering obtained for these four underlying diseases could be used to build groups of patients with correlated clinical data. The proposed methodology gives surmised results from complex data based on a relationship with the health status of the group and draws a picture of the prediction rate of the ongoing health status.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Reference14 articles.

1. Current Techniques for Diabetes Prediction: Review and Case Study

2. Classification of Diabetes Disease Using Support Vector Machine;Anuja;Int. J. Eng. Res. Appl.,2013

3. Application of Data Mining Methods and Techniques for Diabetes Diagnosis;Rajesh;Int. J. Eng. Innov. Technol.,2012

4. Diagnosis of Diabetes Using Classification Mining Techniques

5. A Prediction Technique in Data Mining for Diabetes Mellitus;Harleen;J. Manag. Sci. Technol.,2016

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3