Downscaling Daily Reference Evapotranspiration Using a Super-Resolution Convolutional Transposed Network

Author:

Liu Yong1,Yan Xiaohui123ORCID,Du Wenying2ORCID,Zhang Tianqi3,Bai Xiaopeng3,Nan Ruichuan3

Affiliation:

1. Artificial Intelligence Key Laboratory of Sichuan Province, Yibin 643000, China

2. National Engineering Research Center for Geographic Information System, China University of Geosciences, Wuhan 430074, China

3. Department of Water Resources Engineering, Dalian University of Technology, Dalian 116024, China

Abstract

The current work proposes a novel super-resolution convolutional transposed network (SRCTN) deep learning architecture for downscaling daily climatic variables. The algorithm was established based on a super-resolution convolutional neural network with transposed convolutions. This study designed synthetic experiments to downscale daily reference evapotranspiration (ET0) data, which are a key indicator for climate change, from low resolutions (2°, 1°, and 0.5°) to a fine resolution (0.25°). The entire time period was divided into two major parts, i.e., training–validation (80%) and test periods (20%), and the training–validation period was further divided into training (80%) and validation (20%) parts. In the comparison of the downscaling performance between the SRCTN and Q-M models, the root-mean-squared error (RMSE) values indicated the accuracy of the models. For the SRCTN model, the RMSE values were reported for different scaling ratios: 0.239 for a ratio of 8, 0.077 for a ratio of 4, and 0.015 for a ratio of 2. In contrast, the RMSE values for the Q-M method were 0.334, 0.208, and 0.109 for scaling ratios of 8, 4, and 2, respectively. Notably, the RMSE values in the SRCTN model were consistently lower than those in the Q-M method across all scaling ratios, suggesting that the SRCTN model exhibited better downscaling performance in this evaluation. The results exhibited that the SRCTN method could reproduce the spatiotemporal distributions and extremes for the testing period very well. The trained SRCTN model in one study area performed remarkably well in a different area via transfer learning without re-training or calibration, and it outperformed the classic downscaling approach. The good performance of the SRCTN algorithm can be primarily attributed to the incorporation of transposed convolutions, which can be partially seen as trainable upsampling operations. Therefore, the proposed SRCTN method is a promising candidate tool for downscaling daily ET0 and can potentially be employed to conduct downscaling operations for other variables.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3