The Role of Sewer Network Structure on the Occurrence and Magnitude of Combined Sewer Overflows (CSOs)

Author:

Reyes-Silva JulianORCID,Bangura Emmanuel,Helm BjörnORCID,Benisch Jakob,Krebs Peter

Abstract

Combined sewer overflows (CSOs) prevent surges in sewer networks by releasing untreated wastewater into nearby water bodies during intense storm events. CSOs can have acute and detrimental impacts on the environment and thus need to be managed. Although several gray, green and hybrid CSO mitigation measures have been studied, the influence of network structure on CSO occurrence is not yet systematically evaluated. This study focuses on evaluating how the variation of urban drainage network structure affects the frequency and magnitude of CSO events. As a study case, a sewer subnetwork in Dresden, Germany, where 11 CSOs are present, was selected. Scenarios corresponding to the structures with the lowest and with the highest number of possible connected pipes, are developed and evaluated using long-term hydrodynamic simulation. Results indicate that more meshed structures are associated to a decrease on the occurrence and magnitude of CSO. Event frequency reductions vary between 0% and 68%, while reduction of annual mean volumes and annual mean loads ranged between 0% and 87% and 0% and 92%. These rates were mainly related to the additional sewer storage capacity provided in the more meshed scenarios, following a sigmoidal behavior. However, increasing network connections causes investment costs, therefore optimization strategies for selecting intervention areas are needed. Furthermore, the present approach of reducing CSO frequency may provide a new gray solution that can be integrated in the development of hybrid mitigation strategies for the CSO management.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3