Abstract
Climate change is increasingly affecting the water cycle and as freshwater plays a vital role in countries’ societal and environmental well-being it is important to develop national assessments of potential climate change impacts. Focussing on New Zealand, a climate-hydrology model cascade is used to project hydrological impacts of late 21st century climate change at 43,862 river locations across the country for seven hydrological metrics. Mean annual and seasonal river flows validate well across the whole model cascade, and the mean annual floods to a lesser extent, while low flows exhibit a large positive bias. Model projections show large swathes of non-significant effects across the country due to interannual variability and climate model uncertainty. Where changes are significant, mean annual, autumn, and spring flows increase along the west and south and decrease in the north and east. The largest and most extensive increases occur during winter, while during summer decreasing flows outnumber increasing. The mean annual flood increases more in the south, while mean annual low flows show both increases and decreases. These hydrological changes are likely to have important long-term implications for New Zealand’s societal, cultural, economic, and environmental well-being.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献