The Monothiol Glutaredoxin Grx4 Influences Iron Homeostasis and Virulence in Ustilago maydis

Author:

McCotter Sean W.1,Kretschmer Matthias1,Lee Christopher W. J.1ORCID,Heimel Kai2ORCID,Kronstad James W.1ORCID

Affiliation:

1. Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, 301-2185 East Mall, Vancouver, BC V6T 1Z4, Canada

2. Institute of Microbiology and Genetics, Department of Microbial Cell Biology, Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Grisebachstr. 8, D-37077 Göttingen, Germany

Abstract

The corn smut fungus, Ustilago maydis, is an excellent model for studying biotrophic plant-pathogen interactions, including nutritional adaptation to the host environment. Iron acquisition during host colonization is a key aspect of microbial pathogenesis yet less is known about this process for fungal pathogens of plants. Monothiol glutaredoxins are central regulators of key cellular functions in fungi, including iron homeostasis, cell wall integrity, and redox status via interactions with transcription factors, iron-sulfur clusters, and glutathione. In this study, the roles of the monothiol glutaredoxin Grx4 in the biology of U. maydis were investigated by constructing strains expressing a conditional allele of grx4 under the control of the arabinose-inducible, glucose-repressible promoter Pcrg1. The use of conditional expression was necessary because Grx4 appeared to be essential for U. maydis. Transcriptome and genetic analyses with strains depleted in Grx4 revealed that the protein participates in the regulation of iron acquisition functions and is necessary for the ability of U. maydis to cause disease on maize seedlings. Taken together, this study supports the growing appreciation of monothiol glutaredoxins as key regulators of virulence-related phenotypes in pathogenic fungi.

Funder

Natural Sciences and Engineering Research Council of Canada

NSERC-CREATE PRoTECT program

University of British Columbia

Burroughs Wellcome Fund Scholar in Molecular Pathogenic Mycology, and the Power Corporation fellow of the CIFAR program: Fungal Kingdom Threats & Opportunities

German Research Foundation

DFG Heisenberg

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference40 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3