Enhancing Monascus Pellet Formation for Improved Secondary Metabolite Production

Author:

Zhang Xizi1,Liu Huiqian1,Zhang Mengyao1,Chen Wei1ORCID,Wang Chengtao1

Affiliation:

1. Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology and Business University, Beijing 100048, China

Abstract

Filamentous fungi are well-known for their ability to form mycelial pellets during submerged cultures, a characteristic that has been extensively studied and applied. However, Monascus, a filamentous saprophytic fungus with a rich history of medicinal and culinary applications, has not been widely documented for pellet formation. This study aimed to investigate the factors influencing pellet formation in Monascus and their impact on citrinin production, a key secondary metabolite. Through systematic exploration, we identified pH and inoculum size as critical factors governing pellet formation. Monascus exhibited optimal pellet growth within the acidic pH range from 5 to 6, resulting in smaller, more homogeneous pellets with lower citrinin content. Additionally, we found that inoculum size played a vital role, with lower spore concentrations favoring the formation of small, uniformly distributed pellets. The choice of carbon and nitrogen sources also influenced pellet stability, with glucose, peptone, and fishmeal supporting stable pellet formation. Notably, citrinin content was closely linked to pellet diameter, with larger pellets exhibiting higher citrinin levels. Our findings shed light on optimizing Monascus pellet formation for enhanced citrinin production and provide valuable insights into the cultivation of this fungus for various industrial applications. Further research is warranted to elucidate the molecular mechanisms underlying these observations.

Funder

National Natural Science Foundation of China

Beijing Municipal Natural Science Foundation-Beijing Municipal Education Commission Science and Technology Plan Key Joint Project

Xinjiang ‘Two Zones’ Science and Technology Development Plan Project

Construction of China Food Flavor and Nutrition Health Innovation Center

Beijing Engineering Technology Research Center Platform Construction Project

The Construction of High-Precision Disciplines in Beijing-Food Science and Engineering

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference44 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3