Detection and Analysis of Heartbeats in Seismocardiogram Signals

Author:

Mora NiccolòORCID,Cocconcelli FedericoORCID,Matrella GuidoORCID,Ciampolini PaoloORCID

Abstract

This paper presents an unsupervised methodology to analyze SeismoCardioGram (SCG) signals. Starting from raw accelerometric data, heartbeat complexes are extracted and annotated, using a two-step procedure. An unsupervised calibration procedure is added to better adapt to different user patterns. Results show that the performance scores achieved by the proposed methodology improve over related literature: on average, 98.5% sensitivity and 98.6% precision are achieved in beat detection, whereas RMS (Root Mean Square) error in heartbeat interval estimation is as low as 4.6 ms. This allows SCG heartbeat complexes to be reliably extracted. Then, the morphological information of such waveforms is further processed by means of a modular Convolutional Variational AutoEncoder network, aiming at extracting compressed, meaningful representation. After unsupervised training, the VAE network is able to recognize different signal morphologies, associating each user to its specific patterns with high accuracy, as indicated by specific performance metrics (including adjusted random and mutual information score, completeness, and homogeneity). Finally, a Linear Model is used to interpret the results of clustering in the learned latent space, highlighting the impact of different VAE architectural parameters (i.e., number of stacked convolutional units and dimension of latent space).

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference41 articles.

1. Introduction to the AAL and ELE Systems;Dobre,2017

2. Plug&Play Brain–Computer Interfaces for effective Active and Assisted Living control

3. Subject-independent, SSVEP-based BCI: Trading off among accuracy, responsiveness and complexity

4. Improving BCI Usability as HCI in Ambient Assisted Living System Control;Mora,2015

5. The HELICOPTER Project: A Heterogeneous Sensor Network Suitable for Behavioral Monitoring;Guerra,2015

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3