NiTi SMA Superelastic Micro Cables: Thermomechanical Behavior and Fatigue Life under Dynamic Loadings

Author:

Silva Paulo C. S.ORCID,Grassi Estephanie N. D.,Araújo Carlos J.ORCID,Delgado João M. P. Q.ORCID,Lima Antonio G. B.ORCID

Abstract

Shape memory alloy (SMA) micro cables have a wide potential for attenuation of vibrations and structural health monitoring due to energy dissipation. This work evaluates the effect of SMA thermomechanical coupling during dynamic cycling and the fatigue life of NiTi SMA micro cables submitted to tensile loadings at frequencies from 0.25 Hz to 10 Hz. The thermomechanical coupling was characterized using a previously developed methodology that identifies the self-heating frequency. When dynamically loaded above this frequency, the micro cable response is dominated by the self-heating, stiffening significantly during cycling. Once above the self-heating frequency, structural and functional fatigues of the micro cable were evaluated as a function of the loading frequency for the failure of each individual wire. All tests were performed on a single wire with equal cross-section area for comparison purposes. We observed that the micro cable’s functional properties regarding energy dissipation capacity decreased throughout the cycles with increasing frequency. Due to the additional friction between the filaments of the micro cable, this dissipation capacity is superior to that of the single wire. Although its fatigue life is shorter, its delayed failure compared to a single wire makes it a more reliable sensor for structural health monitoring.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3