Variational Bayesian Algorithms for Maneuvering Target Tracking with Nonlinear Measurements in Sensor Networks

Author:

Hu Yumei1ORCID,Pan Quan23,Deng Bao1,Guo Zhen4ORCID,Li Menghua1,Chen Lifeng5

Affiliation:

1. Xi’an Aeronautics Computing Technique Research Institute, AVIC, Xi’an 710069, China

2. School of Automation, Northwestern Polytechnical University, Xi’an 710072, China

3. Key Laboratory of Information Fusion Technology, Ministry of Education, Xi’an 710072, China

4. System Design Institute of Hubei Aerospace Technology Academy, Wuhan 430040, China

5. Department of Precision Instrument, Tsinghua University, Beijing 100084, China

Abstract

The variational Bayesian method solves nonlinear estimation problems by iteratively computing the integral of the marginal density. Many researchers have demonstrated the fact its performance depends on the linear approximation in the computation of the variational density in the iteration and the degree of nonlinearity of the underlying scenario. In this paper, two methods for computing the variational density, namely, the natural gradient method and the simultaneous perturbation stochastic method, are used to implement a variational Bayesian Kalman filter for maneuvering target tracking using Doppler measurements. The latter are collected from a set of sensors subject to single-hop network constraints. We propose a distributed fusion variational Bayesian Kalman filter for a networked maneuvering target tracking scenario and both of the evidence lower bound and the posterior Cramér–Rao lower bound of the proposed methods are presented. The simulation results are compared with centralized fusion in terms of posterior Cramér–Rao lower bounds, root-mean-squared errors and the 3σ bound.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference57 articles.

1. A game theory approach to target tracking in sensor networks;Gu;IEEE Trans. Syst. Man Cybern. B Cybern.,2011

2. A novel wireless sensor network frame for urban transportation;Hu;IEEE Internet Things J.,2015

3. Experimental link quality characterization of wireless sensor networks for underground monitoring;Silva;IEEE Trans. Ind. Inform.,2015

4. Distributed consensus-based Kalman filter estimation and control of formation flying spacecraft: Simulation and validation;Vu;Biulleten Eksp. Biol. I Meditsiny,2013

5. Distributed fusion in sensor networks;Cetin;IEEE Signal Process. Mag.,2006

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3