Degradation of Reactive Yellow 18 Using Ionizing Radiation Based Advanced Oxidation Processes: Cytotoxicity, Mutagenicity and By-Product Distribution

Author:

Shahzadi Maryam,Bokhari Tanveer Hussain,Nazish Nadia,Usman Muhammad,Ezzine Safa,Alwadai Norah,Iqbal Munawar,Alfryyan Nada,Iqbal Mazhar,Khosa Muhammad Kaleem,Abbas Mazhar

Abstract

The degradation of Reactive Yellow 18 (RY-18), induced by gamma radiation in aqueous medium, was carried out as a function of gamma radiation dose (5–20 kGy) and concentration of hydrogen peroxide, the initial dye concentration and pH of the solution were optimized for the maximum degradation efficiency. Gamma radiations alone and in combination with H2O2 were used to degrade the RY-18. A degradation rate of 99% was achieved using an absorbed dose of 20 kGy, 0.6 mL H2O2 in acidic pH. Variations in the functional groups of untreated and treated RY-18 were determined by FTIR analysis. The LCMS technique was used to determine the intermediates formed during the degradation process. The cytotoxicity and mutagenicity of RY-18 were studied by hemolytic and Ames tests, respectively. There were significant reductions in cytotoxicity and mutagenicity in response to gamma radiation treatment. Cytotoxicity was reduced from 15.1% to 7.6% after treatment with a 20 kGy absorbed dose of gamma radiations with 0.6 mL H2O2. Mutagenicity was reduced by 81.3% and 82.3% against the bacterial strains TA98 and TA100 after treatment with a 20 kGy absorbed dose with 0.6 mL H2O2. The advanced oxidation process efficiency was evaluated using the byproduct formations, which were low-molecular-weight organic acid units, which through further oxidation were converted into carbon dioxide and water end products. Based on RY-18 degradation, cytotoxicity and mutagenicity reduction, the gamma radiation in combination with H2O2 has potential for the removal of dye from the effluents.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3