Contamination Assessment and Source Analysis of Urban Waterways Based on Bayesian and Principal Component Analysis—A Case Study of Fenjiang River

Author:

Pang JiafengORCID,Lin KairongORCID,Gan Wenhui,Hu Sike,Luo Wei

Abstract

Contamination assessment and source analysis of urban waterways are important for the environmental management of water resources. This study applied an improved water quality index (WQI), which was called WQI-DET (water quality index deterioration) to analyze the Fenjiang River’s (Foshan City, South China) water quality monitoring data from 2016 to 2021. Between 2016 and 2021, the Fenjiang River had the highest WQI-DET value in 2016. Since then, the water quality has shown a decreasing trend year by year. Then, through Spearman analysis, it was identified that the chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) are the main factors of water quality deterioration. Moreover a Bayesian model was used to analyze and evaluate the main factors. On this basis, relationships between COD, NH3-N, the natural environment, and human activities were analyzed by principal component analysis. The results showed that NH3-N has been the main factor affecting the water quality in recent years and there were no significant changes in COD and NH3-N during the study period. However, COD and NH3-N showed significant differences in spatial distribution. Meanwhile, human activities contributed 52.3% to the variability in the water quality of the Fenjiang River, and natural factors only 26.8%; factors not considered in this study contributed the remaining 20.9%. Human activities had a more significant impact on the water quality of the Fenjiang River than natural factors.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference36 articles.

1. Current status and prospects of the treatment of urban water-related problems in China;Wang;China Water Resourc.,2021

2. Application of Multiple Statistical Analysis to Spatial-Temporal Variations of Water Quality of the Jinshui River;Bu;Resourc. Sci.,2009

3. An integrated fuzzy-Bayesian water quality assessment model based on triangular fuzzy numbers;Yu;Acta Sci. Circumst.,2013

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3