Improving Urban Stormwater Management Using the Hydrological Model of Water Infiltration by Rain Gardens Considering the Water Column

Author:

Kravchenko Maryna1ORCID,Wrzesiński Grzegorz2,Pawluk Katarzyna2ORCID,Lendo-Siwicka Marzena2ORCID,Markiewicz Anna2ORCID,Tkachenko Tetiana1,Mileikovskyi Viktor3,Zhovkva Olga4,Szymanek Sylwia2ORCID,Piechowicz Konrad2

Affiliation:

1. Department of Environmental Protection Technologies and Labour Safety, Kyiv National University of Construction and Architecture, Povitrianykh Syl pr., 31, 03037 Kyiv, Ukraine

2. Institute of Civil Engineering, Warsaw University of Life Sciences—SGGW, Nowoursynowska 159, 02 776 Warsaw, Poland

3. Department of Heat-Gas Supply and Ventilation, National University of Construction and Architecture, Povitrianykh Syl pr., 31, 03037 Kyiv, Ukraine

4. Department of Architectural Design of Civil Buildings and Structures, National University of Construction and Architecture, Povitrianykh Syl pr., 31, 03037 Kyiv, Ukraine

Abstract

Implementing rain garden (RG) designs is widespread worldwide to reduce peak flow rates, promote stormwater infiltration, and treat pollutants. However, inadequate RG design degrades its hydrological behaviour, requiring the development and validation of an appropriate hydrological model for the design and analysis of structures. This study aimed to improve a hydrological infiltration model based on Darcy’s law by taking into account the height of the water column (HWC) at the surface of the RG and the filtration coefficients of soil materials. The model was tested by simulating the hydrological characteristics of a rain garden based on a single rain event of critical intensity (36 mm/h). Using the validated model, design curves were obtained that predict the performance of the RG as a function of the main design parameters of the structure: water column height, ratio of catchment area to structure area, layer thickness, and soil filtration coefficient. The hydrological efficiency of the RG was evaluated in terms of the time of complete saturation, filling of the structure with water, and determining the change in HWC caused by changes in the parameters. The filtration coefficient and thickness of the upper and intermediate infiltration layers of the RG are the main parameters that affect the depth of saturation of the layers of the structure and the HWC on the surface. The model is not very sensitive to the model parameters related to the lower gravel layer. If the top layer’s thickness increases by 10 cm, it takes longer to fill the structure with water, and the HWC on the surface reaches 0.341 m. The rain garden’s performance improves when the filtration coefficient of the top layer is 7.0 cm/h. Complete saturation and filling of the structure with rainwater do not occur within 7200 s, and the water column reaches a height of 0.342 m at this filtration coefficient. However, the rain garden’s effectiveness decreases if the filtration coefficient of the upper and intermediate layers exceeds 15 cm/h and 25 cm/h, respectively, or if the catchment area to RG area ratio decreases to values below 15. The modelling results confirm that considering the HWC in RG hydrological models is essential for designing structures to minimise the risk of overflow during intense rainfall events.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3