Investigation on Sensing Performance of Highly Doped Sb/SnO2

Author:

Feng Zhifu,Gaiardo AndreaORCID,Valt Matteo,Fabbri BarbaraORCID,Casotti Davide,Krik SoufianeORCID,Vanzetti Lia,Ciana Michele Della,Fioravanti Simona,Caramori StefanoORCID,Rota Alberto,Guidi VincenzoORCID

Abstract

Tin dioxide (SnO2) is the most-used semiconductor for gas sensing applications. However, lack of selectivity and humidity influence limit its potential usage. Antimony (Sb) doped SnO2 showed unique electrical and chemical properties, since the introduction of Sb ions leads to the creation of a new shallow band level and of oxygen vacancies acting as donors in SnO2. Although low-doped SnO2:Sb demonstrated an improvement of the sensing performance compared to pure SnO2, there is a lack of investigation on this material. To fill this gap, we focused this work on the study of gas sensing properties of highly doped SnO2:Sb. Morphology, crystal structure and elemental composition were characterized, highlighting that Sb doping hinders SnO2 grain growth and decreases crystallinity slightly, while lattice parameters expand after the introduction of Sb ions into the SnO2 crystal. XRF and EDS confirmed the high purity of the SnO2:Sb powders, and XPS highlighted a higher Sb concentration compared to XRF and EDS results, due to a partial Sb segregation on superficial layers of Sb/SnO2. Then, the samples were exposed to different gases, highlighting a high selectivity to NO2 with a good sensitivity and a limited influence of humidity. Lastly, an interpretation of the sensing mechanism vs. NO2 was proposed.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3