Tales of Tails

Author:

Essex Christopher1,Andresen Bjarne2ORCID

Affiliation:

1. Department of Mathematics, Middlesex College, The University of Western Ontario, London, ON N6A 5C1, Canada

2. Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark

Abstract

Typical human-scaled considerations of thermodynamic states depend primarily on the core of associated speed or other relevant distributions, because the wings of those distributions are so improbable that they cannot contribute significantly to averages. However, for long timescale regimes (slow time), previous papers have shown otherwise. Fluctuating local equilibrium systems have been proven to have distributions with non-Gaussian tails demanding more careful treatment. That has not been needed in traditional statistical mechanics. The resulting non-Gaussian distributions do not admit notions such as temperature; that is, a global temperature is not defined even if local regimes have meaningful temperatures. A fluctuating local thermodynamic equilibrium implies that any local detector is exposed to sequences of local states which collectively induce the non-Gaussian forms. This paper shows why tail behavior is observationally challenging, how the convolutions that produce non-Gaussian behavior are directly linked to time-coarse graining, how a fluctuating local equilibrium system does not need to have a collective temperature, and how truncating the tails in the convolution probability density function (PDF) produces even more non-Gaussian behaviors.

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3