Abstract
In this paper, the electrical conductivity and electromagnetic shielding effectiveness of two bio-composites are studied by experimental testing and numerical models. Two monolithic composites with partly bio-based content were manufactured. The first bio-composite is made of a carbon fiber fabric prepreg and a partly bio-based (rosin) epoxy resin (CF/Rosin). The second bio-composite is a combination of prepregs of carbon fiber fabric/epoxy resin and flax fiber fabric/epoxy resin (CF-Flax/Epoxy). A single line infusion process was used prior to the curing step in the autoclave. Both variants are exemplary for the possibility of introducing bio-based materials in high performance CFRP. In-plane and out-of-plane electrical conductivity tests were conducted according to Airbus standards AITM2 0064 and AITM2 0065, respectively. Electromagnetic shielding effectiveness tests were conducted based on the standard ASTM D 4935-10. Materials were prepared at the German Aerospace Center (DLR), while characterization tests were conducted at the University of Patras. In addition to the tests, numerical models of representative volume elements were developed, using the DIGIMAT software, to predict the electrical conductivity of the two bio-composites. The preliminary numerical results show a good agreement with the experimental results.
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献