Author:
Guloglu Gorkem E.,Altan M. Cengiz
Abstract
Moisture absorption of composites with nanoscale carbon additives such as carbon nanotubes, carbon nanofibers, graphite nanoplatelets, and carbon black is investigated using thermogravimetric data and a non-Fickian hindered diffusion (Langmuir-type) model. The moisture absorption parameters are determined using this model for six different types of carbon/epoxy nanocomposites. The absorption behaviors obtained at different humidity levels and thermal environments are recovered by minimizing the error between the experimental data and model predictions, thus enabling the accurate determination of the moisture equilibrium level. The absorption behavior and the weight gain of all nanocomposites are shown to be accurately represented by this model over the entire absorption period. The presence of carbon nanomaterials is found to induce varying levels of non-Fickian behavior, governed by the nondimensional hindrance coefficient. This behavior is enhanced with the nanomaterial content and separate from the slight non-Fickian behavior of all neat epoxy samples. The molecular bonding during diffusion, as well as the interfacial moisture storage, could be among the reasons for non-Fickian behavior and should be included in the absorption models for accurate characterization of carbon/epoxy nanocomposites.
Subject
Engineering (miscellaneous),Ceramics and Composites
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献