Abstract
Due to increasing costs and growing environmental concerns pertaining to the construction of structures, an alternative form of reinforcement has been proposed through our studies; through a new beam design methodology, referred to as triple composite beams, glass can be used as a cost-competitive and more environmentally friendly macro-scale compressive reinforcement. The cost competitiveness of glasses derives from their large compressive strength (in general 1000 MPa; >1100 MPa for fused quartz). To support the triple composite design architecture, equations have been developed using Euler–Bernoulli beam theory and the method of transformed sections and compared against finite element modeling determined stresses. Our results show that the average stress was more accurate but less precise than fully considering binder, assuming the binder did not contribute to the cross-section of the beam. The paper concludes by presenting a flexural reinforcement utilization ratio (R), which predicts the ability of a reinforcement-binder combination to utilize the reinforcement to maximum stress effectively while ignoring bonding strength. This R ratio suggests that while concrete is a low cost, it cannot be used in a glass-reinforced beam as the concrete is too stiff compared to the glass.
Reference32 articles.
1. The influence of natural stabilizers and natural fibres on the mechanical properties of ancient Roman adobe bricks
2. Manufacturing Processes for Engineering Materials;Kalpakjian,2016
3. Composites Manufacturing: Materials, Product, and Process Engineering;Mazumdar,2001
4. A brief history of composites in the U.S.—The dream and the success
5. Principles of Composite Material Mechanics;Gibson,2016
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献